题目描述:

There are a total of n courses you have to take, labeled from 0 to n - 1.

Some courses may have prerequisites, for example to take course 0 you have to first take course 1, which is expressed as a pair: [0,1]

Given the total number of courses and a list of prerequisite pairs, is it possible for you to finish all courses?

For example:

1
2, [[1,0]]

There are a total of 2 courses to take. To take course 1 you should have finished course 0. So it is possible.

1
2, [[1,0],[0,1]]

There are a total of 2 courses to take. To take course 1 you should have finished course 0, and to take course 0 you should also have finished course 1. So it is impossible.

Note: The input prerequisites is a graph represented by a list of edges, not adjacency matrices. Read more about how a graph is represented.

Hints:

  • This problem is equivalent to finding if a cycle exists in a directed graph. If a cycle exists, no topological ordering exists and therefore it will be impossible to take all courses.
  • Topological Sort via DFS - A great video tutorial (21 minutes) on Coursera explaining the basic concepts of Topological Sort.
  • Topological sort could also be done via BFS.

Hint中已经说的很明确了,就是判断一个图中有没有环。我用DFS来遍历每个节点,有两个出现环的情况:

  1. 出现了路径中已经出现的节点
  2. 有的节点没有被遍历到过,说明它们没有起始的端点
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
class Solution {
public:
bool canFinish(int numCourses, vector<pair<int, int>>& prerequisites) {
vector<vector<int>> gg(numCourses);
vector<int> prerequested(numCourses, false), allVisited(numCourses, false);
for (int i = 0; i < prerequisites.size(); i++) {
gg[prerequisites[i].first].push_back(prerequisites[i].second);
prerequested[prerequisites[i].second] = true;
}
int prerequestedNum = 0;
for (int i = 0; i < numCourses; i++) {
if (!prerequested[i]) {
vector<int> thisTimeVisited(numCourses, false);
thisTimeVisited[i] = true;
allVisited[i] = true;
if (!DFS(gg, i, allVisited, thisTimeVisited)){
return false;
}
thisTimeVisited[i] = false;
}
else {
prerequestedNum++;
}
}
if (prerequestedNum == numCourses) {
//no start node
return false;
}
for (int i = 0; i < numCourses; i++) {
if (!allVisited[i]) {
//some nodes cannot be visited
return false;
}
}
return true;
}

bool DFS(vector<vector<int>> &gg, int node, vector<int> &allVisited, vector<int> &thisTimeVisited) {
vector<int> nextNodes = gg[node];
for (int i = 0; i < nextNodes.size(); i++) {
if (thisTimeVisited[nextNodes[i]]) {
//find cycle
return false;
}
allVisited[nextNodes[i]] = true;
thisTimeVisited[nextNodes[i]] = true;
if (!DFS(gg, nextNodes[i], allVisited, thisTimeVisited))
return false;
thisTimeVisited[nextNodes[i]] = false;
}
return true;
}
};