题目描述:
You are given a string, s, and a list of words, words, that are all of the same length. Find all starting indices of substring(s) in s that is a concatenation of each word in words exactly once and without any intervening characters.
For example, given:
s: “barfoothefoobarman”
words: [“foo”, “bar”]
You should return the indices: [0,9].
(order does not matter).
首先使用暴力法, 将words中的词放入一个哈希表中, 这样可以在常数时间内找到它. 然后用一个双重循环来遍历字符串s.
class Solution {
public:
vector<int> findSubstring(string s, vector<string>& words) {
vector<int> ret;
int wordsLen = words.size();
if(wordsLen == 0)
return ret;
int wordLen = words[0].length(), sLen = s.length(), totalLen = wordsLen * wordLen;
unordered_map<string, int> wordExistOrig;
for(int i = 0; i < wordsLen; i++){
if(wordExistOrig.count(words[i])){
wordExistOrig[words[i]]++;
}
else{
wordExistOrig[words[i]] = 1;
}
}
for(int i = 0; i <= sLen - totalLen; i++){
unordered_map<string, int> wordExist = wordExistOrig;
bool valid = true;
for(int j = i; j < totalLen + i; j += wordLen){
string str = s.substr(j, wordLen);
if(wordExist.count(str) == 0) {
valid = false;
break;
}
else{
wordExist[str]--;
if(wordExist[str] < 0){
valid = false;
break;
}
}
}
if(valid) ret.push_back(i);
}
return ret;
}
};
还可以使用一种"滑动窗口"方法, 或者是双指针方法, 思路参考这里: http://www.2cto.com/kf/201406/311648.html. 举例来说比如题目中的例子: "barfoothefoobarman"
和数组["foo", "bar"]
, 首先窗口长度为0, 起始位置为0, 窗口长度和起始位置都是以单词长度的整数倍变化的, 这里是3, 首先把第一个单词放进窗口(用{}
来表示窗口): {bar}foothefoobarman
, 由于foo
和bar
每个都只出现一次, 所以把bar
的剩余次数(这个次数保存在hash表中)减1变为0, 接下来把下一个单词放入窗口: {barfoo}thefoobarman
, 同样把foo
的次数减1变为0, 这时窗口中已经有两个单词, 与words数组的大小相同, 就可以把当前的窗口起始位置放入结果集中. 接下来是单词the
, 这个单词在words数组中没有, 所以窗口可以直接跳过它, 将窗口起始位置越过的bar
和foo
的允许出现次数加1, 此时窗口位置位于barfoothe{}foobarman
, 然后重复这个步骤. 为了不忽略类似abarfoo
这种字符串中的结果, 所以要将窗口起始位置从0到单词长度3遍历一次.
代码如下, 运行时间36ms:
class Solution {
public:
vector<int> findSubstring(string s, vector<string>& words) {
vector<int> ret;
int wordsLen = words.size();
if (wordsLen == 0)
return ret;
int wordLen = words[0].length(), sLen = s.length(), totalLen = wordsLen * wordLen;
unordered_map<string, int> wordExist;
for (int i = 0; i < wordsLen; i++) {
if (wordExist.count(words[i])) {
wordExist[words[i]]++;
}
else {
wordExist[words[i]] = 1;
}
}
for (int i = 0; i < wordLen; i++) {
int slideLeft = i, j = i, wordFound = 0;
while (slideLeft <= sLen - totalLen && j < sLen) {
string str = s.substr(j, wordLen);
if (wordExist.count(str) == 0) {
//下一个单词不再words中时将窗口初始位置移到当前之后的位置
j += wordLen;
for (; slideLeft < j; slideLeft += wordLen) {
string toDropStr = s.substr(slideLeft, wordLen);
if(wordExist.count(toDropStr))wordExist[toDropStr]++;
}
//slideLeft = j;
wordFound = 0;
continue;
}
if (wordFound == wordsLen) {
//当窗口满的时候丢弃最前端的字符串
string toDropStr = s.substr(slideLeft, wordLen);
wordExist[toDropStr]++;
slideLeft += wordLen;
wordFound--;
}
wordExist[str]--;
if (wordExist[str] < 0) {
//当前字符串出现次数已满, 要不停的丢弃窗口最前端的字符串直到出现次数为0为止
while (wordExist[str] < 0) {
string toDropStr = s.substr(slideLeft, wordLen);
wordExist[toDropStr]++;
slideLeft += wordLen;
wordFound--;
}
}
wordFound++;
if (wordFound == wordsLen) {//找到一个要求的位置
ret.push_back(slideLeft);
}
j += wordLen;
}
for (; slideLeft < j; slideLeft += wordLen) {
//恢复每个单词出现的次数
string toDropStr = s.substr(slideLeft, wordLen);
if (wordExist.count(toDropStr)) wordExist[toDropStr]++;
}
}
return ret;
}
};