题目描述:

Given a string of numbers and operators, return all possible results from computing all the different possible ways to group numbers and operators. The valid operators are +, - and *.

Example 1

Input: "2-1-1".

1
2
((2-1)-1) = 0
(2-(1-1)) = 2

Output: [0, 2]

Example 2

Input: "2*3-4*5"

1
2
3
4
5
(2*(3-(4*5))) = -34
((2*3)-(4*5)) = -14
((2*(3-4))*5) = -10
(2*((3-4)*5)) = -10
(((2*3)-4)*5) = 10

Output: [-34, -14, -10, -10, 10]

一开始我以为这是个排列组合问题,实际上也确实是,但是使用分治+递归可以更容易的解决。使用每个运算符把算式分割成两部分,再对两部分分别递归地处理,直到没有运算符,就直接返回数值。两边的字符串分别返回一个结果数组,根据操作符对数组中的元素两两进行运算,将结果放到结果集中返回给上一层函数。

要注意的是这道题并不用去重。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
class Solution {
public:
vector<int> diffWaysToCompute(string input) {
return diffWaysToComputeImpl(input, 0, input.length());
}

vector<int> diffWaysToComputeImpl(string &input, int left, int right) {
vector<int> ans;
for (int i = left; i < right; i++) {
if (isOperation(input[i])) {
auto leftResult = diffWaysToComputeImpl(input, left, i);
auto rightResult = diffWaysToComputeImpl(input, i + 1, right);
for (auto j : leftResult) {
for (auto k : rightResult) {
ans.push_back(operate(j, k, input[i]));
}
}
}
}
if (ans.empty()) {
ans.push_back(stoi(input.substr(left, right - left)));
}
return ans;
}

int operate (int a, int b, char op) {
switch(op){
case '+':
return a + b;
case '-':
return a - b;
case '*':
return a * b;
}
}

bool isOperation (char c) {
return (c == '+' || c == '-' || c == '*');
}
};