题目描述:

Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.

For example, given the following triangle

1
2
3
4
5
6
[
[2],
[3,4],
[6,5,7],
[4,1,8,3]
>]

The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).

Note: Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.

比较简单的动态规划题, 每次需要的数据就是上一行到达每个位置的最小路径和. 只要比较左上方与右上方的两个和然后选择较小的一个就可以了.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
class Solution {
public:
int minimumTotal(vector<vector<int>>& triangle) {
if(triangle.empty()) return 0;
vector<int> lastRow, rowSum;
lastRow = triangle[0];
for(int i = 1; i < triangle.size(); i++){
rowSum.resize(triangle[i].size());
rowSum[0] = lastRow[0] + triangle[i][0];
for(int j = 1; j < triangle[i].size() - 1; j++){
rowSum[j] = min(lastRow[j - 1], lastRow[j]) + triangle[i][j];
}
rowSum.back() = lastRow.back() + triangle[i].back();
lastRow = rowSum;
}
int ret = INT_MAX;
for(int i = 0; i < lastRow.size(); i++){
ret = min(lastRow[i], ret);
}
return ret;
}
};