题目描述:
Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent numbers on the row below.
For example, given the following triangle
1 2 3 4 5 6
| [ [2], [3,4], [6,5,7], [4,1,8,3] >]
|
The minimum path sum from top to bottom is 11 (i.e., 2 + 3 + 5 + 1 = 11).
Note:
Bonus point if you are able to do this using only O(n) extra space, where n is the total number of rows in the triangle.
比较简单的动态规划题, 每次需要的数据就是上一行到达每个位置的最小路径和. 只要比较左上方与右上方的两个和然后选择较小的一个就可以了.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
| class Solution { public: int minimumTotal(vector<vector<int>>& triangle) { if(triangle.empty()) return 0; vector<int> lastRow, rowSum; lastRow = triangle[0]; for(int i = 1; i < triangle.size(); i++){ rowSum.resize(triangle[i].size()); rowSum[0] = lastRow[0] + triangle[i][0]; for(int j = 1; j < triangle[i].size() - 1; j++){ rowSum[j] = min(lastRow[j - 1], lastRow[j]) + triangle[i][j]; } rowSum.back() = lastRow.back() + triangle[i].back(); lastRow = rowSum; } int ret = INT_MAX; for(int i = 0; i < lastRow.size(); i++){ ret = min(lastRow[i], ret); } return ret; } };
|