题目描述:

Given an integer n, generate all structurally unique BST’s (binary search trees) that store values 1…n.

For example, Given n = 3, your program should return all 5 unique BST’s shown below.

1
2
3
4
5
1         3     3      2      1
\ / / / \ \
3 2 1 1 3 2
/ / \ \
2 1 2 3

返回由1-n组成的所有可能的二叉搜索树. 先来复习一下二叉搜索树BST的定义:

  1. 任意节点的左子树不空,则左子树上所有结点的值均小于它的根结点的值;
  2. 任意节点的右子树不空,则右子树上所有结点的值均大于它的根结点的值;
  3. 任意节点的左、右子树也分别为二叉查找树;
  4. 没有键值相等的节点。

根据定义, 很容易想到通过递归的方法来产生所有可能的BST, 对于[1,n]n个节点, 从中取一个值1<=r<=n, 则属于[1, r)的值在左子树, 属于(r,n]的值在右子树, 再分别调用递归函数生成相应的左右子树.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
vector<TreeNode*> generateTrees(int n) {
return buildBST(1, n + 1);
}

vector<TreeNode*> buildBST(int left, int right){
vector<TreeNode*> re;
if(left >= right){
return re;
}
for(int i = left; i < right; i++){
auto leftVector = buildBST(left, i);
auto rightVector = buildBST(i + 1, right);
for(int j = 0; j < leftVector.size(); j++){
if(rightVector.empty()){
TreeNode* node = new TreeNode(i);
node->left = leftVector[j];
node->right = nullptr;
re.push_back(node);
}
else{
for(int k = 0; k < rightVector.size(); k++){
TreeNode* node = new TreeNode(i);
node->left = leftVector[j];
node->right = rightVector[k];
re.push_back(node);
}
}
}
if(leftVector.empty()){
if(rightVector.empty()){
TreeNode* node = new TreeNode(i);
node->left = nullptr;
node->right = nullptr;
re.push_back(node);
}
else{
for(int k = 0; k < rightVector.size(); k++){
TreeNode* node = new TreeNode(i);
node->left = nullptr;
node->right = rightVector[k];
re.push_back(node);
}
}
}
}
return re;
}
};