题目描述:
Given a 2D binary matrix filled with 0’s and 1’s, find the largest rectangle containing only 1’s and return its area.
For example, given the following matrix:
1 2 3 4 5
| 1 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1 0 0 1 0
|
Return 6.
本来我想直接用动态规划, 但是做起来非常麻烦. 然后想起了上一道题Largest Rectangle in Histogram是本题解决的步骤之一, 先用动态规划法计算出matrix中每个元素的高(就是该元素和该元素之上的1的个数), 然后以行为单位计算最大的矩形面积.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
| class Solution { public: int maximalRectangle(vector<vector<char>>& matrix) { int row = matrix.size(), col; if(row == 0) return 0; col = matrix[0].size(); vector<vector<int>> heights(row, vector<int>(col, 0)); for(int j = 0; j < col; j++){ heights[0][j] = (matrix[0][j] == '1' ? 1 : 0); } for(int i = 1; i < row; i++){ for(int j = 0; j < col; j++){ heights[i][j] = (matrix[i][j] == '1' ? heights[i - 1][j] + 1 : 0); } } int maxArea = 0; for(int i = 0; i < row; i++){ maxArea = max(maxArea, largestRectangleArea(heights[i])); } return maxArea; } int largestRectangleArea(vector<int>& heights) { vector<int> s; heights.push_back(0); int ret = 0; for(int i = 0; i < heights.size(); i++){ if(s.empty() || heights[i] > heights[s.back()]){ s.push_back(i); } else{ while(!s.empty() && heights[s.back()] >= heights[i]){ int h = heights[s.back()]; s.pop_back(); int w = s.empty() ? i : i - s.back() - 1; ret = max(ret, w * h); } s.push_back(i); } } return ret; } };
|