题目描述:
Given a set of distinct integers, nums, return all possible subsets.
Note: The solution set must not contain duplicate subsets.
For example,
If nums = [1,2,3]
, a solution is:
1 2 3 4 5 6 7 8 9 10
| [ [3], [1], [2], [1,2,3], [1,3], [2,3], [1,2], [] ]
|
取得一个数组的所有子集, 这道题可以直接使用上一道题LeetCode 77. Combinations的方法, 上一题是从[1,n]中取得k个数, 只要把它们当作下标, 然后n从1遍历到nums.size()即可, 然后再插入一个空集.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
| class Solution { vector<vector<int>> kElement; public: vector<vector<int>> subsets(vector<int>& nums) { vector<vector<int>> ret(1, vector<int>()); for(int i = 1; i <= nums.size(); i++){ kElement.clear(); combine(nums.size(), i); for(int i = 0; i < kElement.size(); i++){ vector<int> t(kElement[i].size()); for(int j = 0; j < kElement[i].size(); j++){ t[j] = nums[kElement[i][j] - 1]; } ret.push_back(t); } } return ret; } void combine(int n, int k) { vector<int> v; getKElement(n, k, 1, v); } void getKElement(int n, int k, int start, vector<int> &v){ if(k == 1){ for(int i = start; i <= n; i++){ v.push_back(i); kElement.push_back(v); v.pop_back(); } return; } for(int i = start; i <= n - k + 1; i++){ v.push_back(i); getKElement(n, k - 1, i + 1, v); v.pop_back(); } } };
|