LeetCode 51. N-Queens
题目描述:
The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no two queens attack each other.
Given an integer n, return all distinct solutions to the n-queens puzzle.
Each solution contains a distinct board configuration of the n-queens’ placement, where ‘Q’ and ‘.’ both indicate a queen and an empty space respectively.
For example, There exist two distinct solutions to the 4-queens puzzle:
[ [".Q..", // Solution 1 "...Q", "Q...", "..Q."], ["..Q.", // Solution 2 "Q...", "...Q", ".Q.."] ]
N皇后问题, 采用递归+回溯的方法, 依次穷举每一种情况.
class Solution {
public:
vector<vector<string>> solveNQueens(int n) {
vector<vector<int>> board(n, vector<int>(n, 0));
vector<vector<string>> re;
NQueensRow(n, board, 0, re);
return re;
}
void NQueensRow(int n, vector<vector<int>> &board, int row, vector<vector<string>> &re) {
if (row == n) {
reItem(board, re);
return;
}
for (int i = 0; i < n; i++) {
if (validPos(board, row, i)) {
board[row][i] = 1;
NQueensRow(n, board, row + 1, re);
board[row][i] = 0;
}
}
}
bool validPos(vector<vector<int>> &board, int x, int y) {
int n = board.size();
for (int i = 0; i < n; i++) {
if (board[x][i] && i != y)
return false;
else if (board[i][y] && i != x)
return false;
}
int xt, yt;
for (xt = x - 1, yt = y - 1; xt >= 0 && yt >= 0; xt--, yt--){
if (board[xt][yt])
return false;
}
for (xt = x + 1, yt = y + 1; xt < n && yt < n; xt++, yt++) {
if (board[xt][yt])
return false;
}
for (xt = x - 1, yt = y + 1; xt >= 0 && yt < n; xt--, yt++){
if (board[xt][yt])
return false;
}
for (xt = x + 1, yt = y - 1; xt < n && yt >= 0; xt++, yt--) {
if (board[xt][yt])
return false;
}
return true;
}
void reItem(vector<vector<int>> &board, vector<vector<string>> &ret) {
int n = board.size();
vector<string> re(n, string(n, '.'));
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
if(board[i][j]) re[i][j] = 'Q';
}
}
ret.push_back(re);
}
};